+7 (499) 653-60-72 Доб. 417Москва и область +7 (812) 426-14-07 Доб. 929Санкт-Петербург и область

Закон независимого наследования аллельных генов

Закон независимого наследования аллельных генов

Дигибридное скрещивание Скрещивание особей, различающихся по двум парам признаков, называется дигибридным. Поскольку каждый организм характеризуется очень большим разнообразием признаков, а число хромосом ограничено, то каждая из них должна нести большое число генов. Результаты дигибридного скрещивания зависят от того, лежат ли гены, определяющие рассматриваемые признаки, в одной хромосоме или в разных. Независимое наследование.

Дорогие читатели! Наши статьи рассказывают о типовых способах решения юридических вопросов, но каждый случай носит уникальный характер.

Если вы хотите узнать, как решить именно Вашу проблему - обращайтесь в форму онлайн-консультанта справа или звоните по телефонам, представленным на сайте. Это быстро и бесплатно!

Содержание:

Основы генетики. Законы наследственности

ВИДЕО ПО ТЕМЕ: Дигибридное скрещивание. Закон независимого наследования - Биология 10 класс #27 - Инфоурок

В начале XIX века Джон Госс John Goss , экспериментируя с горохом, показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые. Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении [1].

Огюстен Сажрэ фр. Он установил, что при гибридизации родительские признаки распределяются между потомками без всякого смешения между собой. Таким образом, к середине XIX века было открыто явление доминантности, единообразие гибридов в первом поколении все гибриды первого поколения похожи друг на друга , расщепление и комбинаторику признаков во втором поколении. Тем не менее, Мендель, высоко оценивая работы предшественников, указывал, что всеобщего закона образования и развития гибридов ими не было найдено, и их опыты не обладают достаточной достоверностью для определения численных соотношений.

Нахождение такого достоверного метода и математический анализ результатов, которые помогли создать теорию наследственности, является главной заслугой Менделя [1]. Понятие гомозиготности было введено позднее У. Бэтсоном в году [3]. При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого.

Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Некоторые противоположные признаки находятся не в отношении полного доминирования когда один всегда подавляет другой у гетерозиготных особей , а в отношении неполного доминирования.

Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот.

При кодоминировании , в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно смешанно. Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена А и В. Скрещивание организмов двух чистых линий , различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.

Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении. В норме гамета всегда чиста от второго гена аллельной пары.

Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Гипотеза чистоты гамет. Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары.

Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически.

Слияние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении рецессивного признака одного из родителей может быть только при двух условиях: 1 если у гибридов наследственные факторы сохраняются в неизменном виде; 2 если половые клетки содержат только один наследственный фактор из аллельной пары.

Расщепление потомства при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, то есть несут только один ген из аллельной пары. Гипотезу теперь её называют законом чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена.

Известно, что в каждой клетке организма в большинстве случаев имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы обычно содержат каждая по одному аллелю данного гена. Отцовские и материнские хромосомы обозначены разным цветом. В процессе образования гамет у гибрида гомологичные хромосомы во время I мейотического деления попадают в разные клетки.

При слиянии мужских и женских гамет получается зигота с диплоидным набором хромосом. По данной паре хромосом и данной паре аллелей образуются два сорта гамет. При оплодотворении гаметы, несущие одинаковые или разные аллели, случайно встречаются друг с другом. Когда скрещивались гомозиготные растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам, и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга.

Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле , то есть были с пурпурными цветами и желтыми горошинами, с белыми цветами и желтыми горошинами, с пурпурными цветами и зелёными горошинами, с белыми цветами и зелёными горошинами.

При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга.

Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними. В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена а таких признаков абсолютное большинство , он имеет более сложный характер наследования.

Материал из Википедии — свободной энциклопедии. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 11 ноября ; проверки требуют 3 правки. Зарождение и развитие генетики. В этой статье или разделе имеется список источников или внешних ссылок , но источники отдельных утверждений остаются неясными из-за отсутствия сносок.

Утверждения, не подкреплённые источниками , могут быть поставлены под сомнение и удалены. Вы можете улучшить статью, внеся более точные указания на источники. История Список генетических терминов.

Молекулярная генетика Цитогенетика Популяционная генетика Экологическая генетика Эпигенетика Генетика человека Медицинская генетика Геногеография Археогенетика. Наследование Законы Менделя Хромосомная теория наследственности Взаимодействие генов Сцепленное наследование Сцепление с полом Мутагенез. Категории : Генетика Биологические законы Именные законы и правила.

Пространства имён Статья Обсуждение. В других проектах Викисклад. Эта страница в последний раз была отредактирована 3 февраля в Текст доступен по лицензии Creative Commons Attribution-ShareAlike ; в отдельных случаях могут действовать дополнительные условия. Подробнее см. Условия использования. Закономерности наследования были сформулированы в г Грегори Менделем в работе "Опыты над растительными гибридами". В г закономерности наследования переоткрыты Корренсем, Чермаком и Гого де Фризом.

Первый и второй законы Менделя основаны на моногибридном скрещивании, а третий - на ди и полигибридном. Бесплатная консультация с юристом! При скрещивании гомозиготных особей, отличающихся по одной паре альтернативных взаимоисключающих признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Скрещивали растения гороха с желтыми доминантный признак и зелеными рецессивный признак семенами. Образование гамет сопровождается мейозом. Каждое растение образует один сорт гамет.

Из каждой гомологичной пары хромосом в гаметы отходят по одной хромосоме с одним из аллельных генов А или а. Закономерности наследования, установленные Г. Менделем Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Законы Менделя кратко и понятно В результате исследований ученых К.

Корренса, Г. В своих опытах естествоиспытатель применил гибридологический метод, благодаря которому были сформулированы принципы наследования признаков и некоторых свойств организмов. В данной статье мы рассмотрим основные закономерности передачи наследственности, изучаемые генетиком.

Применение гибридологического метода позволило ученому установить ряд закономерностей, впоследствии названных законами Менделя. Например, им было сформулировано правило единообразия гибридов первого поколения первый закон Менделя. Он указывал на факт проявления у гибридов F1 только одного признака, контролируемого доминантным геном.

Закон независимого наследования - Биология 10 класс 27 - Инфоурок На уроке мы продолжим изучать основы генетики, рассмотрим дигибридное скрещивание и закон независимого наследования признаков. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов F1 окажется единообразным и будет нести проявление признака одного из родителей. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

Закон чистоты гамет : в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи. Законы Менделя. Основы генетики Приложение "Генетика" с примерами решения задач в Google Play. Третий закон Менделя — это закон независимого распределения признаков. Под этим подразумевается, что каждый ген одной аллельной пары может оказаться в гамете с любым другим геном из другой аллельной пары.

Например, если организм гетерозиготен по двум исследуемым генам AaBb , то он образует следующие типы гамет: AB, Ab, aB, ab. Дальнейшие свои опыты Мендель немного усложнил. Скрестив чистые линии доминантной и рецессивной форм, Мендель получил в первом поколении в полном соответствии с законом единообразия гибридов первого поколения растения с семенами доминантного типа: все горошины были жёлтые гладкие.

При рассмотрении основных законов генетики необходимо отметить, что они носят статистический характер, то есть эти законы можно обнаружить при изучении очень большого количества объектов. Так, изучив 10 особей данного вида, обнаружить тот или иной закон нельзя — слишком мало параллельных наблюдений. Чем больше параллельных наблюдений будет сделано, тем четче и рельефнее будет проявляться тот или иной генетический закон.

Используя гибридологический метод исследования, Г.

В начале XIX века Джон Госс John Goss , экспериментируя с горохом, показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые. Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении [1]. Огюстен Сажрэ фр.

Сохрани ссылку в одной из сетей: Закономерности наследования признаков 1. Открытие Г. Менделем законов независимого наследования. История генетики — повторить! Научный период генетики начался с 1900 г. Мендель открыл основные закономерности наследования признаков в поколениях в 1866 г.

Закон независимого наследования признаков кратко

При этом гетерозиготы встречаются чаще, а гомозиготы реже. Если вернуться к тому, что каждый признак наследуется независимо, и по каждому наблюдается расщепление 3:1, то можно вычислить вероятность фенотипов по двум признакам разных аллелей, умножая вероятность проявления каждого аллеля т. Таким образом, мы получаем то же соотношение фенотипов: 9:3:3:1. Объясняется третий закон Менделя независимым расхождением гомологичных хромосом разных пар при первом делении мейоза. Хромосома, содержащая ген A, может с равной вероятностью уйти в одну клетку как с хромосомой, содержащей ген B, так и с хромосомой, содержащей ген b. Хромосома с геном A никак не привязана к хромосоме с геном B, хотя они обе и были унаследованы от одного родителя. Можно сказать, что в результате мейоза хромосомы перемешиваются.

Третий закон Менделя

Хромосомное определение пола. Наследование, сцепленное с полом. После рассмотрения всех указанных вопросов учащиеся легко формулируют основные положения хромосомной теории. Таким образом, на этом этапе у учащихся формируется понятие гена как участка хромосомы и генотипа как системы взаимодействующих генов. Молекулярная теория гена. Однако, данный материал не затрагивает важнейшие проблемы современной генетики и молекулярной биологии, над решением которых работают ученые в настоящее время регуляция активности генов, экзон-интронная структура генов эукариот. Обойти вниманием эти вопросы значило бы остановиться на полпути, сформировать у учащихся представление о генетике как о науке косной, несовременной, не имеющей будущего.

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Дигибридное скрещивание. Закон независимого наследования признаков. Видеоурок по биологии 10 класс
Оcновы генетики.

Предшественники Менделя[ править править код ] В начале XIX века Джон Госс John Goss , экспериментируя с горохом, показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые. Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении [1]. Огюстен Сажрэ фр. Он установил, что при гибридизации родительские признаки распределяются между потомками без всякого смешения между собой. Таким образом, к середине XIX века было открыто явление доминантности, единообразие гибридов в первом поколении все гибриды первого поколения похожи друг на друга , расщепление и комбинаторику признаков во втором поколении. Тем не менее, Мендель, высоко оценивая работы предшественников, указывал, что всеобщего закона образования и развития гибридов ими не было найдено, и их опыты не обладают достаточной достоверностью для определения численных соотношений. Нахождение такого достоверного метода и математический анализ результатов, которые помогли создать теорию наследственности, является главной заслугой Менделя [1]. Методы и ход работы Менделя[ править править код ] Эксперимент Менделя с горохом Мендель изучал, как наследуются отдельные признаки.

Законы Менделя

Закон независимого наследования признаков и его цитологическое обоснование. Примеры независимого наследования признаков у человека. Гибриды могут дать 4 типа гамет. Открытие независимого характера наследования разных признаков у гороха дало возможность Менделю высказать предположение о дискретности наследственного материала, в котором за каждый признак отвечает своя пара наследственных задатков, сохраняющих в ряду поколений свою структуру и не смешивающихся друг с другом.

.

.

Определение. Закон независимого наследования (третий закон Менделя) — при В норме гамета всегда чиста от второго гена аллельной пары.

Передача наследственных признаков, законы Менделя

.

.

.

.

.

.

Комментарии 3
Спасибо! Ваш комментарий появится после проверки.
Добавить комментарий

  1. Глеб

    Я Вам очень обязан.

  2. Орест

    Чтобы не сказать больше.

  3. reminbo

    осталась довольной!

© 2019 rcoi67.ru